

Real Time Avateering with Skeleton

and Face Tracking

Prof. Matthias Zwicker Eashaan Kumar

Department of Computer Science
Rm. 4471 A.V. Williams Building,

University of Maryland-College Park,
MD 20742

August, 2017

A. Abstract
This research project aims to create a system for remote presence for users in the form of a 3D
virtual avatar. It allows them to establish eye contact with their avatar. Through the use of Kinect
SDK and facial landmark detection techniques, the system does full body tracking and facial
expression tracking. For a more immersive experience, it makes use of virtual reality through
Oculus Rift. The project is implemented in a popular game engine called Unity3D that renders
the avatar and talks to the Kinect sensor. Skeleton tracking and avatar mesh deformation is
done directly by the Kinect. Facial landmark detection is done by an open source library called
the Deformable Shape Tracking library. Blend weights are used to alter the avatar’s facial
expressions and successfully mirror the user.

1

Table of Contents
I. Introduction 3

Computer Vision 3
Virtual Reality 3
Game Engines 3

II. Objective 4

III. Previous Solutions 5

IV. Underlying Technologies 6
Skeleton Tracking 6
Facial Feature Tracking 7
Blendshapes 8
Unity3D 8

Overview 8
GameObjects 9
Components 9
Rendering and Unity Blendshapes 10
Asset Store 10

OpenCV 10
D.E.S.T. 11

Overview 11
Functionality 11
Command Line Tools 12

V. Implementation 12
Installation 12
Skeleton Tracking 13
Extensions 15
“AvatarFaceController” Script 16
DEST Methods 17
Blend Weight Mathematics 20
VR 22

VI. Results 23
Achievements 23
Improvements 24

VII. Conclusion 25

VIII. References 26

2

I. Introduction

Computer Vision
Computer Vision opens up various possibilities for computer scientists. It allows them to give
computers better capability to extract, analyze and understand useful information from a
sequence of images. Whether it is identifying shapes in images or recognizing faces in video
streams, computer vision makes any form of image processing faster and more interesting.
OpenCV is one of the most well known open-source libraries with great vision capabilities,
which is available in various languages including C++, Java and Python.

Virtual Reality
Virtual Reality is the computer-generated simulation of a three-dimensional image or
environment that can be interacted with in a seemingly real or physical way. The user wears a
set of virtual reality goggles that render the scene and change the virtual world’s camera’s
orientation based on the orientation of the user’s head. Often times the users interact with the
virtual world with hand controllers and sends their relative coordinates in space to the computer.
For example, if the user bends down while wearing a VR headset and holding a controller, the
camera in the virtual world will rotate to face downwards and translate some unit distance
realistically. The user might extend the hand outwards, causing the virtual hand in the scene to
extend outwards as well. Many virtual reality hand controllers have buttons and triggers that
also allow users to grab, release, point and perform other gestures in the virtual world.

Game Engines
A game engine is a piece of software used for developing computer and video games. They are
usually free to download. A game engine usually comes with built-in features such as physics
and sound engines and a rendering system. With the rise of 3D games, many game engines
like Unity3D and Unreal also include animation support that allow programmers to import
animations from modeling software such as Blender. Games engines also allow easy access to
different developing environments such as PC, mobile and VR. For this research, we are
interested in VR development. Hence game engines are very useful to render 3D meshes in a
VR environment.

3

II. Objective
We wanted to use the benefits of computer vision to accomplish our research project titled
“Ultimate Vision.” In its simplest form, the title takes the form of just “Vision”; the “Ultimate” was
applied after pre-established research goals were met and additional work was done. In other
words, our research project is modular, with a basic part to start with and then two extensions
that are more challenging and interesting from a research point of view.

In Summer 2017, Professor Zwicker in Department of Computer Science and I attempted to
create a system for remote presence for users. Ultimate Vision will allow users to establish eye
contact in the virtual world. This system also includes full body tracking and simple
facial-landmark detection for facial expression tracking. Users will be able to see each other’s
hand, leg, finger, neck, and torso movements and also see facial expressions. The “mirroring”
effect is implemented on Oculus Rift VR headsets.

4

III. Previous Solutions
There are many implementations of face tracking and skeleton tracking available online. Before
beginning the implementation, we researched various phD papers by students and professors
around online and evaluated their implementations and their feasibility.

We came across a solution by students at Texas A&M University who implemented “the first
realtime 3D eye gaze capture method that simultaneously captures the coordinated movement
of 3D eye gaze, head poses and facial expression deformation using a single RGB camera”
(“Realtime 3D Eye Gaze” 1). At first, this seemed like the perfect solution for us since it detected
landmarks on the face and generated an accurate face mesh. However, it used an RGB camera
instead of the Kinect which meant the RGB camera may or may not have the same depth of
field view as the Kinect RGB camera or a worse resolution.

Another interesting paper published by a Stanford student used landmark detection to perform
facial overlays of the user on a target. At run time, their implementation tracked “facial
expressions of both source and target video using dense photometric consistency measure”
(“Face2Face” 1). Then, reenactment was achieved by “fast and efficient deformation transfer
between source and target.” This seemed like a potential idea we could implement in our
research. However, it was a bit complicated and we were looking for something simpler and
easy to integrate into Unity. Also, it did not work in VR.

A preliminary version of the paper by the same authors caught our attention because it worked
with VR. Called FaceVR, it is a “method for gaze-aware facial reenactment in the Virtual Reality
(VR) context” (Thies, Justus et al. 1). Their algorithm performs real-time facial motion capture of
user and eye tracking from monocular videos. It also renders photorealistic rendering of the face
and eye. This seemed like the perfect match for our research specifications. However, the VR
headset they used was augmented. They had placed small cameras inside for eye tracking. We
chose to avoid altering any equipment in our lab.

An approach by students at Carnegie Mellon relied heavily on geometry to calculate how open a
specific facial part is. For example, a mouth can be approximated by a line when “fully closed”,
an ellipse with a line in the middle when “relatively closed”, and an ellipse with no line when
“open” (Tian, Ying-li, et al 10). Although we didn’t use their mathematical techniques for our
blend weight calculation, it served as a great inspiration for the algorithm I have developed. To
see how the algorithm works, look at section “Blend Weight Mathematics.”

5

IV. Underlying Technologies

Skeleton Tracking
The Kinect skeleton tracking system can be broken down into two stages: first computing a
depth map and second inferring body position.

First, the depth map is constructed by the Kinect’s time-of-flight camera. This camera “emits
light signals and then measures how long it takes them to return” (Meisner 1). It is accurate to
the speed of light: 1/10,000,000,000 of a second. Thus, the camera is able to differentiate
between light reflected from objects in the surrounding environment.

Figure 1a (left): Kinect’s various sensors. Figure 1b (right): Distributions color coded by classifier.

Upon receiving the depth sensor information, the Kinect uses an object recognition approach
that simplifies the complexity of body-part detection into a “simpler per-pixel classification
problem” (Shotton, Jamie et al. 1). From a single input depth image, a per-pixel body part
distribution is calculated as color-coded as shown above. Each distribution is labeled either as
skeleton joint of interest or predictors for other joints. These form pairs of distributions (what the
Kinect thinks is a body-part of interest) and the inferred body part. They are used as labeled
data for classifiers that are trained on large database of such pairs.

Randomized decision forests, which are binary trees that take in a distribution and output the
probability of the classification, are used to process each pixel at the rate of 5 arithmetic
operations per 3 image pixels. Moreover, “each tree is trained on a different set of randomly
synthesized images” (Shotton, Jamie et al. 4).

The final step is to use this per-pixel information to generate reliable proposals for 3D positions
of skeleton joints. Using equation 7 (Shotton, Jamie et al. 1) various parameters such as
number of pixels, pixel weight and pixel depth are used to calculate the x,y and z coordinates.

6

Facial Feature Tracking
DEST, a facial landmark tracking library used in this research depends on OpenCV’s
CascadeClassifier class. The CascadeClassifier class relies on the Haar Feature-based
Cascades to perform facial detection operations. Below is the explanation of Viola-Jones face
detection that is used for facial landmark tracking.

Computer scientists Paul Viola and Michael Jones published an algorithm using Haar
feature-based classifiers in their 2001 paper “Rapid Object Detection using a Boosted Cascade
of Simple Features.” According to Face Detection using Haar Cascades tutorial page provided 1

by opencv.org, this involves a machine learning based approach “where a cascade function is
trained from a lot of positive and negative images. It is then used to detect object in other
images.”

Positive images are images of faces and Negative images are images without faces. For face
detection, the algorithm needs a lot of positive and negative images to train the classifier. After
training, haar features are used to extract features. “Each feature is a single value obtained by
subtracting the sum of pixels under white rectangle from sum of pixels under black rectangle.”

Figure 2: Example of Haar features used on images to find light/dark regions of interest on the face.

But sometimes the features that are calculated are irrelevant. For example, features used to
detect eyes are darker on top and lighter on bottom to mimic how light interacts with the
eye-region of the face. This would be useless if applied to cheeks or any other place. To select
the best features out of hundreds of thousands of combinations, a technique called Adaboost is
used.

1 http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html

7

For this method, every feature is trained on positive and negative images and only the ones with
minimum error rate are chosen for face feature tracking. But applying this new set of features
over a 24x24 image is still very inefficient. For this, the concept of Cascade of Classifiers is
used to group the features into different stages and then they are applied one-by-one. It is much
faster since if a given window fails at a particular stage, all other stages can be discarded and
hence avoid using the remaining features. A windows that passes all stages is a face region.
This is extended by the DEST library to detect individual landmarks on the face.

Blendshapes
Blendshapes are simple linear model of facial expressions used for realistic facial animation.
They are prevalent in Hollywood films and commercial animation software. Although they
originated in industry, they became a subject of academic research relatively recently. It is
important to examine how blendshapes work since they are heavily used to animate the avatar’s
face in this research.

Figure 3a (left): Blendshapes used on a character mesh. Figure 3b (right): Example of arbitrary

deformations that blendshapes prevent.

A blendshape model “generates a facial pose as a linear combination of a number of facial
expressions” (Lewis, et al. 1). These expressions are known as targets. Then, the weights of
the linear combination are varied within defined minimum and maximum values. Hence, they
form a domain of possible facial states that the model mesh can take, the minimum being the
initial state and the maximum being the target state (figure 3a).

This is advantageous for the animators since these weights have intuitive meaning as the
strength or influence of various facial expressions. Also, it allows animators to stay on target
since arbitrary deformations are not possible (figure 3b).

Unity3D

Overview
Unity3D is a cross-platform game engine developed by Unity Technologies that comes with a
built in rendering engine, physics engine, sound engine and animation engine (“Unity -

8

Manual”). It is primarily used to develop video games, simulations for various gaming consoles,
computers, and mobile platforms. It supports drag and drop functionality, scripting through the
C# language and 2D and 3D graphics.

GameObjects

Figure 4: Different Components attached to a GameObject in Unity.

A GameObject is a C# class in Unity that describes any object that exists in the game world.
Each GameObject has a Transform object that contains its position, rotation and scale data.
GameObjects can be arranged in hierarchical structure with a parent-child relationship. For
example, if a square was placed as child under a circle, and the circle was scaled by a factor of
2, the square will also be scaled by a factor of 2. For the purposes of this research, the
hierarchical structure was used to pair various body parts of the avatar is a manner that allows
us to easily rotate and animate the character model’s bones. For example, the hands, legs, and
head were children of the body so that if the position of the body was changed, the limbs and
head would stay with the body.

Components
Scripting in Unity is done through Components. A Component is a class or object that is
attached to each GameObject in the scene. Each Component can be enabled or disabled which
will enable or disable its effects on the GameObject accordingly. The scripts that were written for
Kinect avateering and face detection were attached to the avatar model as separate
components. One advantage of separating code in this manner is cleanliness and ease of use
since any change made to one script will not affect the other.

Each Component has its own set of parameters that can be set through the Unity Editor in the
Inspector Panel. When writing a script, such as the ones used for this research, public variables
can be declared in the program that will appear as fields in the parameters list of that
component. This allows the programmer to change and tweak the parameters without
hardcoding in a value into the program.

9

Rendering and Unity Blendshapes

Figure 5: Skinned Mesh Renderer attached to our character model

Rendering in Unity3D is done through the “Mesh Renderer” Component. A Mesh Renderer was
used to render the image of the user’s face captures by Kinect’s own camera. That image was
then sent to the DEST library and OpenCV for facial tracking.

The avatar model contains the “Skinned Mesh Renderer”, which is a Mesh Renderer but also
contains blendshapes. The Skinned Mesh Renderer renders the following body parts of our
avatar model: head, body, hair, eyes, teeth, and tongue. However only the blendshapes on the
head are used to animate the face.

Asset Store

The Asset Store is a global marketplace where developers can place their own implementations
of projects and Unity modules for sale. Some products are free to download and free to use,
while others are paid and some with particular licenses. Many types of products can be found
there, including textures, images, UI, sound effects and even fully implemented games. We
used the Asset Store to download code that made use of Kinect Windows API to seamlessly
apply the correct transformations to the animation bones of the avatar.

OpenCV
OpenCV stands for Open Source Computer Vision Library which is released under a BSD
license. Hence, it is free to use academically and commercially. It comes in many languages
including C++, C, Python and Java. OpenCV supports Windows, Linux, Mac OS, iOS and
Android. According to opencv.org, the library was “designed for computational efficiency and
with a strong focus on real-time applications.” Because it is implemented in C/C++, it can take
advantage of multi-core processing. Around the world it has been downloaded 14 million times
and used in applications such as interactive art, mines inspection, stitching maps and advanced
robotics.

10

There are two popular versions: OpenCV2 and OpenCV3. We used OpenCV3 to communicate
with Unity to ensure the latest updates and patches. The library came as a zip file which was
extracted and compiled using Cmake (“Cmake Useful Variables”). The generated binaries are
required by the DEST library.

D.E.S.T.

Figure 6: Examples of DEST face landmark detection in action.

Overview
Deformable Shape Tracking (DEST) is a C++ library that provides high performance 2D shape
tracking leveraging machine learning methods (Heindl, Christoph 1). It is built on top of OpenCV
and uses the Eigen library to perform tracking and classifying operations. DEST features
include:

● Framework for arbitrary shape transformations
● Efficient landmark alignment algorithm
● Pre-trained trackers for a quick start

DEST comes with a trained classifier and tracker included. According to the github repository
owners, the pre-trained face trackers have been trained on a dataset of 3200 images.

Functionality
The release version is downloaded as a zip file and compiled and built using Cmake. DEST
includes a wrapper for OpenCV based face detection in face_detector.cpp. The tracker and
classifier must be loaded using Tracker and Classifier classes. To detect a single face, the
detectSingleFace(image, rect) method can be called. Here, image is an instance of the Image
class and rect of Rect class provided by this library. Image is the library’s version of cv::Mat and
is used for calculations performed on images by this library. Finally, the tracker must be invoked
by calling Tracker’s predict() method with returns a Shape object. DEST’s Shape class contains
the landmark locations in columns (x,y) for the given image. The number of landmarks depends
on the data used during training.

11

Command Line Tools
DEST also provides command line tools to test databases of images and trackers. Command
line tools such as dest_align and dest_track_video can be used to run the tracking algorithm
on an image or video. Commands such as dest_train and dest_evaluate allow us to train
trackers on our own database and then evaluate the effectiveness and accuracy of that tracker.

V. Implementation
Ultimate Vision was implemented in three separate phases: installation, skeleton tracking, and
extensions. The project was split in this manner because each phase required extensive
research and time.

Installation
In the beginning, I attempted to setup the Kinect on Mac OS since that is my preferred operating
system. To do so, I first had to install OpenNI for Mac OS to be able to communicate with the
Kinect. But after running into various compatibility issues and finding no solutions on the
Internet, I learned that Mac El Capitan requires NITE (another supporting library) and does not
support Windows SDK for Kinect. As discussed earlier, the Kinect SDK was necessary for Unity
to communicate with the Kinect. Furthermore, the SDK offered skeleton tracking code that was
not available in C# in Unity.

Staying with Mac OS, I searched for possible solutions or a work around directly through Unity
on the Asset Store. As mentioned earlier, the Asset Store contains many products and wrappers
for problems that other programmers have encountered. An asset called Dlib FaceLandmark
Detector by the company Enox Software was available for costed $40. Another asset that came 2

to my attention was FaceTacker Example which was a free asset also provided by Enox 3

Software. However, it required the purchase of OpenCV for Unity asset which costs $95. 4

Unable to find a free solution that could get the Kinect to work in Unity on Mac OS, I decided to
switch to Windows 10 and use Kinect for Windows SDK . Windows was installed on my 5

Macbook via Bootcamp (“How to Install Windows” 1) since there was no other computer
available in the research lab.

2 https://www.assetstore.unity3d.com/en/#!/content/64314
3 https://www.assetstore.unity3d.com/en/#!/content/35284
4 https://www.assetstore.unity3d.com/en/#!/content/21088
5 https://developer.microsoft.com/en-us/windows/kinect

12

Skeleton Tracking

Figure 7: A screenshot of the Kinect SDK’s sample Unity project. Upper left: my body in RGB. Lower left:

my body through a depth filter. In the middle: Kinect’s skeleton tracking; green lines are bones; white
cubes are joints. On the right: Kinect’s 3D point of view.

The SDK came with a sample Unity project that provided basic skeleton tracking code.
However, it did not provide code to apply the skeleton tracking data to a 3D character model. I
wrote a script in Unity that could apply the correct movements from the skeleton data (shown in
green in Figure 7) to a 3D character model I downloaded from the Asset Store. This character
model came with the asset Male Character Pack which is now deprecated. 6

To do this, every joint in the character was mapped to every joint in the green skeleton. Then,
the position and rotation of the character joints were updated and tested. The result was
unexpected:

6 https://www.assetstore.unity3d.com/en/#!/content/124

13

https://www.assetstore.unity3d.com/en/#!/content/124

Figure 8: Character distortion due to my methodology of setting bone positions directly. Top: character
from the front with clear limb distortions. Bottom: character from the back with a clear view of the torso

lagging behind the rest of the body.

Obviously, my strategy did not work; manually setting the position and rotation of each joint
distorts the character mesh in unexpected ways. The distortion can be seen by the stretching of
the arms, legs and neck above. Due to the distortion, the texture also has been distorted. Also,
some body parts, like the hips, seem to be way behind of the rest of the body. This is due to the
incongruence between Unity character bone structures and Kinect’s skeleton bone structure;
there are bones in Unity’s character models that do not exist in Kinect’s skeleton tracking. One
solution to this problem may have been to use a lerp function to estimate the hip position based
on the positions of other body parts. But even so, the distortion of the other body parts would
remain an issue.

The solution for this problem was found in the asset called Kinect v2 Examples with MS-SDK . 7

As the name suggests, this asset comes with scripts and demos that demonstrate the
capabilities of Windows Kinect SDK. It comes with 12 demos with all the code available to use:
AvatarsDemo, BackgroundRemovalDemo, ColliderDemo, FaceTrackingDemo,
FittingRoomDemo, GesturesDemo, InteractionDemo, MovieSequenceDemo, MultiSceneDemo,
OverlayDemo, PhysicsDemo.

7 https://www.assetstore.unity3d.com/en/#!/content/18708

14

https://www.assetstore.unity3d.com/en/#!/content/18708

The AvatarsDemo contained a script called AvatarController that correctly overlaid the Kinect
skeleton data onto any character model of our choice. It solved the problem by keeping track of
every bone and muscle to estimate the rotation and position of each body part. My initial method
of editing the bones directly was only half correct; the mathematics behind muscle movements
involves keeping track of every muscle movement as angles in an array. In the Update()
method, the CheckMuscleLimits() method clamps the bones within the designated range of
angles to avoid the contortions seen in my attempts. Seeing the success that this script
achieved, I decided to keep it and use it on my own character model. Hence, the skeleton
tracking on an avatar is completed.

Figure 9: Skeleton detection working correctly.

Extensions
Now that the base requirement of the project was done, I began implementing facial tracking
features. Kinect SDK’s Unity sample project included a script called FacetrackingManager that
performed basic facial landmark detection for eyes, eyebrows, and mouth. This Kinect face
detector returned a float value from -1 to 1 which represents the percent of which a facial
feature is open or closed. For example, To raise the upper lip:

float fAU0 = manager.GetAnimUnit(KinectInterop.FaceShapeAnimations.LipPucker);

fAU0 will now hold a value that represents how much to the raise the upper lip to simulate a lip
pucker. The “manager” refers to an instance of FacetrackingManager. KinectInterop is a class
provided by Kinect SDK that contains constants and other utility functions.

15

“AvatarFaceController” Script
After obtaining the percentage value, I used Unity’s SkinnedMeshRenderer to access the
avatar’s facial blendshapes. For the particular avatar that is being used, values in the range
from 0 - 200 blend the face mesh a reasonable amount as seen below.

Figure 10a (left), 10b (right): Examples of blend shapes used to alter facial expressions on our character

model. Here the mouth is being opened by entering a value between 0 (closed) and 200 (open).

Next, the blend weight can be set by SetBlendShapeWeight() method of the
SkinMeshRenderer. To manage this system, I created a script called AvatarFaceController that
holds a reference to this SkinMeshRenderer and sets the blend weights accordingly. The result
can be seen in Figure 11.

Figure 11: Rudimentary facial tracking provided by Kinect SDK. Blue box on the left shows facial

expression values used for blend shapes calculations. Grayscale image on the left depicts my expression
being mirrored by the avatar in the middle. Ignore red box on the right

However, the face tracking at this point was inconsistent and caused random jitters of the mouth
and eyes to blink when my head was turned at an angle. This might have been due to poor

16

image processing capabilities provided by the Kinect SDK. Furthermore, the Kinect failed to
track any facial features if my hand blocked my face from the Kinect’s view. Since our plan also
included the additional step of integrating VR, it is obvious that the big headset on the user’s
face would break this face tracking system.

We needed a more universal system that provided smooth facial landmark positions and was
capable of detecting facial features when an obstacle obstructed the Kinect’s view. After testing
the tracking system with obstacles in front of my face, I reached the conclusion that the Kinect
was able to track my face when it was partially or even completely obstructed but unable to
detect my facial features. If the Kinect couldn’t keep track of my face, this image would appear
as black.

Figure 12: Same grayscale image that was present in Figure 11 on the left. This is evidence that Kinect

tracks the user’s head even if view is obstructed.

The FaceTrackingDemo included a script called SetFaceTexture that communicates with
Kinect SDK’s FacetrackingManager to obtain an image of the user’s face. It renders the image
onto a plane, as seen in Figure 11. To use that image for face landmark detection, I created a
script called DestManager. DestManager obtains the image from the plane every frame and
processes it grayscale image in a coroutine called UpdateDest(). After the grayscale image has
been created, that image is sent off to DEST for processing. DEST requires the incoming image
to be a floating-point array with grayscale values from 0 - 1.

DEST Methods
The most important aspect of this process is the way in which Unity and DEST communicate.
DEST is a C++ library which means that it cannot be used in Unity directly. For that reason, I
created a separate project using DEST and OpenCV in C++ titled ultimate_vision. Inside this
project, there is a main.cpp program that contains the code for doing the image processing and
tracking. There are 5 methods: Init(), DetectFace(), SetLandmarksOfInterest(), GetXPos(),
and GetYPos().

Int Init(const char *fullPathCalssifier, const char *fullPathTracker)

Init takes in the full paths of the classifier and tracker as arguments. It loads the classifier and
tracker and returns an error if either failed to load.

17

int DetectFace(const char *fullPathTempImg, double* a, int rows, int cols)

DetectFace() takes in the full path to a temporary image, a double array or pixels and
dimensions of the image. The reason for the temporary image will be explained below. The
double array is converted to an OpenCV compatible image called Mat with the following line:

cv::Mat imgCV = cv::Mat(rows, cols, CV_64F, (uchar*)a);

The constant CV_64F signifies that the image is 64 bit with an array of floating point numbers
for pixels. To convert this image into a readable format for DEST:

imgCV.convertTo(imgCV, CV_64F, 255);

Here, 255 converts the pixel array from values 0-1 to 0-255. At this point, imgCV appears as a
black image if rendered using cv::imshow(). After extensive research, I learned that initializing
an image via 1D array does not create the three color channels correctly. To fix this issue,
cv::imwrite() is used to save the current image to the temporary path that was provided as the
first parameter. Then, it is reloaded from the same path by using cv::imread() and the constant
CV_LOAD_IMAGE_GRAYSCALE (“OpenCV” 1). This was an important step since it creates all
color channels appropriately and renders correctly as a grayscale image. At this point, if the
image was not read or was empty, the method will exit with exit code -3.

void SetLandmarksOfInterest(int* points, int count)

This method updates the list of landmark indices that will be tracked by Unity. It takes an array
of indices and copies each element into a local array. While drawing the landmarks in the
window, each landmark that is present in this local array is highlighted red to set it apart from
other landmarks.

int GetXPos(int landmarkIndex) and int GetYPos(int landmarkIndex)

These two methods take a landmark index as parameter and return the landmark’s x and y pixel
coordinates. This method is used by Unity to obtain the coordinates of the edges of the mouth
and nose to estimate the facial expression.

The next step is doing the face landmark detection for a single face by calling FaceDetector’s
detectSingleFace() method. If no faces were detected, the method will exit with exit code -4.
Assuming a face was detected, a Shape object is created by Tracker’s predict() method and is
added onto the image to be rendered. The input image is rendered in the window titled “Dest
input” and the landmarks are rendered in the window titled “Landmarks”:

18

Figure 13a (left), 13b (right): Input image received by DEST and output image after landmark detection.

Finally, main.cpp is exported as a dll and imported into Unity using C#’s
System.Runtime.InteropServices. In DestManager, Init() is called in Start() and DetectFace() is
called after every frame is converted to grayscale. As mentioned before, this is done in a
coroutine since DEST processing can be intensive and too much load on the main Unity thread
causes a significant drop in frame rate.

Now that the landmark detection works from Unity, it can be used to relay landmark information
back to Unity every frame. To do this, the indices of each landmark (purple dots in Figure 13b)
must be known. An easy solution is to render the indices as text on the image itself rather than
dots. DEST’s drawShape() method does not render text, so I created a wrapper method called
drawShapeMain() that takes in the same parameters as drawShape() with the addition of a
second color. This color will be used to highlight the landmarks of interest.

The method drawShapeMain() calls an auxiliary method drawShapeAux() that iterates through
every landmark available in the given Shape object and create a string from that index. If the
local array, landmarksOfinterst, contains that index, that means Unity wants to that landmark
to be highlighted. So that text is rendered in red color. Otherwise, it is rendered in purple color.

19

Figure 14: Individual landmarks represented by their array index provided by DEST. Red colored

landmarks are tracked by Unity for blend weight calculations.

Unity uses the imported dll method SetLandmarksOfInterest() to pass in an array of 6 integers
including:

● 48 = mouth edge left
● 54 = mouth edge right
● 51 = mouth edge up
● 57 = mouth edge down
● 31 = nose edge left
● 35 = nose edge right

The indices for eyes and eyebrows have been intentionally left out since we plan to train our
own tracker that will only track the bottom half of the face.

Blend Weight Mathematics
DestManager sends AvatarFaceController the frame information to be used for blend weight
calculations. The math behind calculating blend shapes is as follows:

We must first find the aspect ratio of the window. This is necessary so that we can scale
distances and positions of landmarks based on the image resolution.

aspectRatio = 1 / frame.width

Next, we can use main.cpp’s GetXPos() and GetYPos() to get their positions in 2D space and
then find the distance between them. But different image resolutions will cause the image to
scale up or down, causing the landmarks to be separated by varying number of pixels. The raw
distance must be scaled by the aspect ratio in order to get an accurate measurement of the
distance relative to window size.

dis = Vector2.Distance(landmark1Pos, landmark2Pos) * aspectRatio

20

The distance can be used to calculate a percentage value representing how opened or closed a
facial expression is that corresponds to the two landmarks. Let’s call this value prcnt. For prcnt
to be 0, the distance between landmarks 1 and 2 must be zero. For prcnt to be 1, the distance
between them must be at their maximum. One issue is that two landmarks will never have a
distance of 0 since human facial anatomy doesn’t let one point on the face cover the other.
Hence prcnt will never reach 0. Also, there is no concrete way to tell how large the maximum
distance can be which means there is no way to define when prcnt can take on the value of 1.
This can be solved by establishing a domain.

A domain consists of a range of distances, [min, max], that describe the lowest and highest
distance values that have ever occurred between two landmarks since the program was started.
Every frame, these min and max values are updated by comparing them to distance:

min = Mathf.Min(dis, min)
max = Mathf.Max(dis, max)

This means that every frame the domain holds the smallest and the largest possible value
distance has taken on so far. Now, we can normalize prcnt between these two values

prcnt = (dis - min) / (max - min)

Here is a pictorial depiction of what is taking place. Lets imagine that our two landmarks are
mouth edge left and mouth edge right.

Figure 15a (top left): An elliptical representation of a mouth with upper and lower lip. Red dots represent

the two landmarks. Figure 15b (top right): An example of all possible distances between the landmarks as
lips come closer together and move farther apart; Inspired by Figure 4 in Carnegie Mellon’s paper (Tian,

Ying-li, et al 10). Figure 15c (bottom): Percent calculation of how much the user is smiling in this example.

21

Finally, the blend weight can be calculated by multiplying the percent value by some constant k
that represents the largest value a blend weight can take on. The ‘k’ constant will be different for
each facial feature on the model.

blendweight = prcnt * k

With this formula, the avatar model can be made to smile by using mouth edges left and right
and made to open its mouth using edges up and down. The two nose edges can be used to
scrunch the nose. Due to time constraints, I was only able to implement these facial features.
But the landmark data can allow us to create countless more expressions.

VR
Implementing VR is as simple as downloading Oculus Utility Package from Oculus Rift’s 8

website and checking the “Virtual Reality Supported” in the Player Settings menu in Unity. The
headset must be connected to the computer that Unity is running on.

8 https://developer.oculus.com/downloads/unity/

22

https://developer.oculus.com/downloads/unity/

VI. Results

Achievements
The end result is a full-body tracking system with VR integration. When users look through the
headset, they see an avatar mirroring their movements. The avatar also follows their movement
in 3D space. For example, if they move closer to the Kinect, the avatar moves closer to the
game camera and vice versa.

Figure 16a (left), 16b (right): Avatar moving in 3D space based on user’s movements.

However, if the users get too close the Kinect is unable to detect some of their body parts such
as head, legs or arms. This results in unexpected skeleton behaviour and causes distortions in
the corresponding bones in the avatar. If this happens the user must step back from the Kinect
so it can pick up their entire body.

Figure 17: Leg distortion being caused by me standing too close to the Kinet. The yellow skeleton on the

right shows my legs being obstructed.

Currently, the face tracking does not work with VR headsets because I was unable to get to the
face-tracker training part of this research. The user must take off the headset to make the avatar
mirror their facial movements.

23

Improvements
To improve this system, it is necessary to use DEST’s command line tools to train a tracker on a
database of faces with VR headsets. Then, the paths to the tracker and classifier have to be
switched in DestManager to the new trained trackers and classifiers. The DEST methods in
main.cpp will work the same way and thus the dll does not have to be re-compiled.

A temporary image is being used to store the input image received by DEST and then converted
into grayscale when read from file. This is a slow and unnecessary step that could be optimized
by sending in a RGB image rather than a single grayscale channel. Further research must be
done into other image formats supported by DEST. If a suitable format is found, then Unity can
send each frame as an array of integers where each integer contains RGB data. Upon receiving
the data, DEST can initialize an image with the three channels and then convert it to grayscale
to be used for processing. This will allow faster runtimes for the image detection and help
maintain steady frame rates.

The approach for using blend shapes must also be considered. Blend shapes are suitable for
animation purposes. But unlike animation, landmark detection provides exact positions of
interest on a face. It may be treated as discrete vertex positions of the face of the avatar. A
better approach might be to directly alter the vertices of the face model mesh based on
individual landmarks. This will allow greater flexibility as there are more points on the face and
hence more emotions can be created.

Based on Carnegie Mellon’s paper (Tian, Ying-li, et al 10), a better way to calculated mouth
shapes must be implemented. Rather than only tracking the edges, all landmarks on the lips
could be used to generate an outline of the mouth. If the outline is just a line, that would mean
the lips are tightly closed. If the outline forms an ellipse and there is dark line or contour inside
the ellipse, then the lips are relatively closed. If there are two ellipses, one inside of the other,
then the lips are open. The percent value for openness can be calculated by multiplying the
area of the embedded ellipse by a constant to use as blendweight. This will generate more
accurate mouth expressions in the avatar since all landmarks around the mouth are being taken
into consideration.

24

VII. Conclusion
This project can be greatly improved. Throughout the development process, Prof. Zwicker and I
faced multiple challenges including not having enough computers to work on and getting Kinect
to work with Unity. I personally spent a significant amount of time researching and learning
Cmake to compile OpenCV and DEST on Windows. The lack of a windows machine forced us
to install Windows via Bootcamp which came with its own set of challenges.

It was worth pushing through those challenges to bring together this system that could one day
prove beneficial to the computer vision industry. The applications of live skeleton tracking
include the entertainment industry. Currently, movie makers and video game designers use
complicated motion-capture systems that require a large room filled with cameras and a suit
studded with sensors for the wearer. With the help of few Kinect sensors and face landmark
detectors like DEST, the entertainment industry can significantly simplify motion capture by
tracking the actors’ skeletons and applying them to a 3D model.

Another application of this technology is a multiplayer-mirroring system where two people can
establish eye contact in a virtual world. Long distance video calling will feel like in-person
chatting as users are able to experience the other person’s facial expressions and gestures. It
will push the boundaries of what virtual reality headsets can do by adding a seemingly real
element to the user experience.

Before that could happen, many Ultimate Vision needs to be improved. The avatar facial
expressions need to be more realistic and its body movements less jittery. Better trackers must
be trained on a diverse database of images so that facial landmark detection is more accurate
and works when the face is obstructed from view. A better 3D avatar model is needed with more
blend shapes so that more facial expressions can be formed. Ultimate Vision, when fully
implemented along with networking multiple users, will drastically change how we interact with
other online.

25

VIII. References
“CMake Useful Variables - KitwarePublic.” N.p., n.d. Web. 24 Aug. 2017.

“Face2Face: Real-Time Face Capture and Reenactment of RGB Videos.” N.p., n.d. Web.

24 Aug. 2017.

Heindl, Christoph. Dest: :Panda_face: One Millisecond Deformable Shape Tracking Library

(DEST). N.p., 2017. GitHub. Web. 24 Aug. 2017.

“How to Install Windows on Your Mac with Boot Camp.” Apple Support. N.p., n.d. Web. 24

Aug. 2017.

Jeffrey Meisner. “Collaboration, Expertise Produce Enhanced Sensing in Xbox One.” The

Official Microsoft Blog. N.p., n.d. Web. 27 Aug. 2017.

Lewis, J.P., Ken Anjyo, Taehyun Rhee, Mengjie Zhang, Fred Pighin, and Zhigang

Deng.Practice and Theory of Blendshape Facial Models. Eurographics, n.d. Web.

“OpenCV: Image File Reading and Writing.” N.p., n.d. Web. 24 Aug. 2017.

“Realtime 3D Eye Gaze Animation Using a Single RGB Camera.” N.p., n.d. Web. 24 Aug.

2017.

Shotton, Jamie et al. “Real-Time Human Pose Recognition in Parts from a Single Depth

Image.” Microsoft Research (2011): n. pag. www.microsoft.com. Web. 27 Aug. 2017.

Thies, Justus et al. “FaceVR: Real-Time Facial Reenactment and Eye Gaze Control in

Virtual Reality.” arXiv:1610.03151 [cs] (2016): n. pag. arXiv.org. Web. 24 Aug. 2017.

Tian, Ying-li, et al. “Multi-State Based Facial Feature Tracking and Detection.” Robotics

Institute, Carnegie Mellon University, Aug. 1999, pp. 1–30.

“Unity - Manual: Unity User Manual (2017.1).” N.p., n.d. Web. 24 Aug. 2017.

26

